

An Inclusive Search for H→WW at CDF

Matthew Herndon, University of Wisconsin Madison

FNAL Theory Group Seminar, August 2009

Electroweak Symmetry Breaking

- An experimentalist's conception
- Consider the Electromagnetic and the Weak Forces
- Coupling at low energy: EM: $\sim \alpha$, Weak: $\sim \alpha/(M_{WZ})^2$
 - Fundamental difference in the coupling strengths at low energy, but apparently governed by the same dimensionless constant
 - Difference due to the massive nature of the W and Z bosons
- SM postulates a mechanism of electroweak symmetry breaking via the Higgs mechanism
 - Results in massive vector bosons and mass terms for the fermions
 - Directly testable by searching for the Higgs boson

A primary goal of the Tevatron and LHC

Electroweak Constraints

- Higgs couples strongly to massive particles
 - Introduces corrections to W and top masses sensitivity to Higgs mass

SM LEP Direct search:

 $m_H > 114 GeV$

SM indirect constraint:

m_H < 157GeV @ 95% CL

We know where to look!

SM Higgs Production and Decay

- High mass: H→WW→IvIv decay available
 - Take advantage of large gg→H production cross section
- Alternative production mechanisms
 - WH→WWW, ZH→ZWW, VBF: qq→Hqq->WWjj
 - Significant contribution in events with 1, 2 or more jets and same sign events

Colliders and Experiments

- Tevatron: 2TeV pp collider with two general purpose detectors:
- CDF properties
- Excellent lepton Id
- Good calorimeters for jet and MET reconstruction
- Excellent silicon detector for b jet identification (top rejection)
- Higgs analysis uses full capabilities of the detectors

Given a SM Higgs

Tevatron: Higgs mass exclusions or evidence

High mass Higgs the most interesting with current dataset

Tools: Triggers and Leptons

- Extract handful of Higgs events from a background 11 orders of magnitudes larger
- Higgs couples, decays to heavy particles
- Primary triggers: High p_T e and μ
 - Triggers upgraded to use previously non triggerable areas of the muon system
- Lepton Id
 - Optimize lepton Id on large samples of W, Z bosons
 - Lepton Id and trigger performance calibrated to high precession on Z samples

Maximizing Higgs acceptance

Tools: Backgrounds

- SM processes create a variety backgrounds to Higgs detection
- Discovery analyses: WW, WZ, ZZ, from run 1 top pairs
- Total and differential cross section measurements
 - QCD dijets, W+jets, Z(γ*)+jets-
- Critical to Higgs
 - Some backgrounds cannot be predicted using MC. W+jets with a fake lepton
 - Constrain background predictions
 - Testing ground for tools and techniques
 - Control regions

Higgs search built on a foundation of the entire collider physics program

SM Higgs: H→WW

- H→WW→IvIv signature: Two high p_T leptons and MET
 - Primary backgrounds: WW and top in di-lepton decay channel

Key issue: Maximizing signal acceptance

Excellent physics based discriminants

Spin correlation: Charged leptons go in the same direction

H→WW: Δφ Analysis

- Initial analysis: PRL 97, 081802 (2006)
 - gg → H production only
 - Purely based on signal vs. background discrimination of $\Delta \phi$ variable

Used standard CDF high p_T lepton Id Results: mH = 160GeV: 95%CL

	s/SM			
Analysis	Lum	Higgs	Exp.	Obs.
	(fb ⁻¹)	Events	Limit	Limit
CDF: Δφ	0.36	0.58	8.9	8.2

- Compared to current 4.8fb⁻¹ analysis
 - Higgs acceptance improved: ~x3.8
 - 3 years, 15 people, 8FTE, 1 paper
 - Interestingly acceptance improvement and new data almost accounts for current sensitivity: Naive expectation: 1.3xSM

H→WW Improvements

- Lepton acceptance: x2.5 effective statistics
 - Based on lepton selection of WZ and ZZ discovery analyses: x2.2
 - Electrons in calorimeter gaps
 - Muons in forward region and detector gaps
 - Further improvements
 - New muon triggers in partially instrumented regions (pioneered in single top analysis): x1.1
 - Electron likelihood, more efficient for same fake rate: x1.1
- 8 μ , 2 e and 1 e/μ type

Performance validated in 31 DY and 14 Z→ττ control regions

H→WW Improvements

- Higgs production processes: x1.55 effective statistics
 SM Higgs boson production
 - WH: +24%
 - ZH: +8.6%
 - VBF: +8.8%
 - Same sign region for WH and ZH
 - 2+ Jets region for all processes including
 - Required re-optimization of analysis in jet bins

- Low dilepton mass region: +3.8%
- Required understanding of new control regions and backgrounds as a function of jet multiplicity

H→WW Improvements

- Multivariate discriminants
 - Neural Net: x1.2
 - Matrix Element likelihood ratio: x1.2
- Final analysis combining above: x1.3 sensitivity
 - Signals and backgrounds categorized by lepton quality and jet multiplicity
 - Specific backgrounds and types of signal occur in each jet multiplicity bin
 - Fake lepton background primarily in categories with low lepton quality
 - Simplified identification of physics based discriminating variables
 - Matrix elements used in 0 jet bin only
 - Adds 10% over use of NN or Matrix Element alone
- Requires extensive validation

Multivariate Analysis

- Validation of multivariate discriminants
 - This procedure is standard within the Higgs group
- Technical tests
 - Tests for overtraining
 - Stability of various trainings and stability across adjacent mass points
- Optimal variables
 - Examine correlation of variables to NN output. Only keep most significant.
 Typically order 10 variables.
 - Examine 2D correlations between variables and identify where there is strong discrimination between signal and background.

Multivariate Analysis

- Variable modeling: typically 10 NN and 10 kinematic
 - MC vs data in signal and relevant control regions
 - Also check 2D profile plots
 - With NN divide plots into signal like and background like regions and check modeling in both regions separately
- These checks have led to discarding variables and systematic uncertainty studies
 - Angle between jets in 2 jet events not well modeled. Not surprising since primary MC is Pythia
 - Total vector sum Jet Et is fine
 - N Jet distribution in DY poorly modeled. Systematic check done by reweighing DY MC to correct distribution

Multivariate Analysis

Check final NN output in signal and control regions

Systematic uncertainties

- Check that NN output is not extremely susceptible to systematic effects that change shapes
- Jet energy scale
- Lepton fake rate vs. pt
- Higgs scale and pdf variations (NNLO).
 Now checked in jet multiplicity bins also
- DY reweighing to match data
- WW background scale, pdf (NNLO tools would be useful)
- gluon fusion production fraction (in progress, first look using histograms from DO indicated that this is not a severe effect).

SM Higgs: H→WW

Wγ tī

WZ

ZZ

DY

WW

- Data

350

300 350 40 M_T(II⊭_T) (GeV/c²)

300

— HWW × 10

Inclusive H→WW analysis: IvIv MET – signature

Channel	Signal	Primary background	Primary discriminants
0 Jets	gg→H	WW, DY	Δφ/R,MET,ME
1 Jet	gg→H, VH, VBF	WW, DY	$\Delta \varphi/R,MET,m_{TH}$
2+ Jets	gg→H, VH, VBF	Top dilepton	MET,HT,m _{TH}
1+ Jets SS lepton	VH	W+Jets	Good lepton ID, MET
Low mll	gg→H	γ conv.	Lepton pT

Control Regions

Channel	Signal	Primary background	Primary discriminants
0 Jets	gg→H	WW, DY	$\Delta \varphi$ /R,MET,ME
1 Jet	gg→H, VH, VBF	WW, DY	$\Delta \varphi$ /R,MET,m _{TH}
2+ Jets	gg→H, VH, VBF	Top dilepton	MET,HT,m _{TH}
1+ Jets SS lepton	VH	W+Jets	Good lepton ID, MET
Low mll	gg→H	γ conv.	Lepton pT

Fitted Templates

- At least one control region for every primary background

Control regions

- Low MET: Understand DY, lepton Id efficiencies
- Large MET aligned along jet of lepton: False MET
- SS: W+false leptons (0 jet bin only)
- High WW ME likelihood: Measure WW cross section
- b tagged jets, top dilepton: Measure ttbar cross section
- Low dilepton mass low MET OS and SS: Photon conversion backgrounds

Matrix Element Likelihood Ratio (LRWW)

Background

Control Regions

20

0.5

400

500

Ht 2JOS

600

2J 08

W+jets

Control regions, further examples

- Large MET aligned along jet of lepton: False MET region
- SS: W+false leptons region
- b tagged jets: top dilepton region

H→WW Result

CDF Run II Preliminary	$\int \mathcal{L} =$	= 4.8	$ m fb^{-1}$		
$M_H = 165 \text{ GeV}/c^2$					
$\overline{t}\overline{t}$	196	土	32		
DY	342	\pm	61		
WW	605	\pm	65		
WZ	54.8	\pm	7.5		
ZZ	42.3	\pm	5.8		
W+jets	278	\pm	70		
$W\gamma$	191	\pm	27		
Total Background	1710	士	140		
gg o H	22.3	±	4.8		
WH	4.38	\pm	0.57		
ZH	1.59	\pm	0.21		
VBF	1.61	\pm	0.26		
Total Signal	29.8	土	5.1		
Data		1733			

High Mass

Approaching SM sensitivity! 30 Higgs Events!

Combined Limits

- Limit calculation and combination
 - Combination necessary in H→WW similar to the full CDF combination
 - Using Bayesian methodology.
 - Incorporate systematic uncertainties using pseudo-experiments (shape and rate included) (correlations taken into account between channels)

Backgrounds can be constrained in the fit

H→WW Some Details

- Previous NNLL cross section: S. Catani, D. de Florian, M. Grazzini, and P. Nason, JHEP 07, 028 (2003), hep-ph/0306211 CTEQ5L
 - Include two loop EW diagrams: U. Aglietta, B. Bonciani, G. Degrassi, and A. Vivini (2006), hep-ph/0610033.
 - 2009 MSTW PDFs Martin Sterling Thorne Watt hep-ph/0901.0002
- · Integrated together into the latest state of the art predictions
 - Latest gluon PDF, full treatment of EW contribution, better treatment of b
 quark masses
 C Anastasiou, R Boughezal, F Petriello, hep-ph/0811.3458

D. de Florian, M. Grazzini, hep-ph/0901.2427

Example systematic table

- Rates and shapes considered
- Shape: Scale variations (in jet bins), ISR, gluon pdf, Pythia vs. NNL0 kinematics, DY pt distribution, jet energy scale, lepton fake rate shapes: for signal and backgrounds. Included in limit setting if significant.

CDF: $H \to WW \to \ell^{\pm}\ell^{\mp} + 0$ Jets Analysis											
Uncertainty Source	WW	WZ	ZZ	$t\bar{t}$	DY	$W\gamma$	W+jet	$gg \rightarrow H$	WH	ZH	VBF
Cross Section											
Scale								10.9%			
PDF Model								5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%		12.0%			
Acceptance											
Scale (leptons)								2.5%			
Scale (jets)								4.6%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		1.5%			
PDF Model (jets)								0.9%			
Higher-order Diagrams	5.5%	10.0%	10.0%	10.0%	5.0%	10.0%					
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%		1.0%			
Conversion Modeling						20.0%					
Jet Fake Rates											
(Low S/B)							21.5%				
(High S/B)							27.7%				
MC Run Dependence	3.9%			4.5%		4.5%		3.7%			
Lepton ID Efficiencies	2.0%	1.7%	2.0%	2.0%	1.9%	1.4%		1.9%			
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	7.0%		3.3%			
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%		5.9%			

Treatment developed jointly by CDF and DØ

H→WW Result

Exp. 1.26 @ 160, 1.21 @ 165, 1.45 @ 170 GeV

Obs. 1.27 @ 160, 1.23 @ 165, 1.64 @ 170

Limit/SM

62%

Tevatron Higgs Combination

Exp. 1.1 @ 160/165, 1.4 @ 170 GeV

Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹

Signal yield (events)	Background yield (events)	Data
0.028	0.017	0
0.073	0.060	0
0.918	1.065	1
0.598	0.987	0
3.14	7.84	4
1.38	5.38	3
4.61	25.0	26

Exp. 2.4 @ 115

Obs. 0.99 @ 160/170, 0.86 @ 165 GeV

Projections

- Goals for increased sensitivity achieved
 - Goals set after 2007 Lepton Photon conference
 - First stage target was sensitivity for possible high mass Tevatron exclusion
 - Second stage goals: target is CDF only exclusion or large Tevatron exclusion in grogress
 - · Trileptons
 - Lower missing et
 - Tau channels
 - Overlapping leptons

Discovery

- · Discovery projections: chance of 3σ or 5σ discovery
 - Two factors of 1.5 improvements examined relative to summer Lepton Photon 2007 analyses, low and high mass
 - First 1.5 factor achieved for summer ICHEP 2008 analysis
 - Result: exclusion at m_H = 170 GeV. Already extended to 160-170 GeV
 - Expect large exclusion(or evidence): Full Tevatron dataset/improvements CDF+D0, $m_H=115~GeV$ CDF+D0, $m_H=160~GeV$

Conclusions

- The Higgs boson search is in its most exciting era ever
 - The Tevatron experiments have achieved sensitivity to the SM Higgs boson production cross section
 - CDF will reach sensitivity for single experiment exclusion soon
- We exclude at 95% C.L. the production of a SM Higgs boson of 160-170 GeV
 - Expect large exclusion, or evidence, with full Tevatron data set and improvements

SM Higgs Excluded: $m_{H} = 160-170 \text{ GeV}$